Roll No.
Total No. of Pages : 04

Total No. of Questions : 09

B.Tech. (Batches 2005-2010) (Sem.-2nd)

ENGG. MATHEMATICS-II

Subject Code : AM-102
Paper ID : [A0119]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Answer briefly :
(a) Test whether the set of vectors
$\{(1,1,1),(1,-1,1),(3,-1,3)\}$
is linearly dependent or independent.
(b) Find the rank of the matrix

$$
\left(\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
1 & 1 & -1 & 2 \\
0 & 2 & 1 & -1
\end{array}\right)
$$

(c) Prove that eigen values of the Hermetian matrix are purely real.
(d) Find the integrating factor of the equation:

$$
\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0
$$

(e) Find the complete solution of the equation

$$
\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=0, x(0)=0, \frac{d x}{d t} \text { at } t=0=15
$$

(f) Give physical interpretation of 'curl' of a vector point function.
(g) Find the 'Flux' of $\overrightarrow{\mathrm{F}}=(x-y) i+x j$ across the circle $x^{2}+y^{2}=1$ in the $x-y$ plane.
(h) A continuous r.v. X has a p.d.f. $f(x)=3 x^{2}, 0 \leq x \leq 1$. Find b s.t. $\mathrm{P}[\mathrm{X}>b]=0.05$
(i) Write any four chief characteristics of Normal probability curve.
(j) Show that the fluid motion given by

$$
\vec{v}=(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}
$$

is irrotational.

SECTION-B

2. (a) Use Gauss-Jordan row-reduction method to find the inverse of the matrix

$$
\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & -1 & 1 \\
1 & -1 & 2
\end{array}\right)
$$

(b) Test the consistency of the system of equations:
$x+2 y-z=3 ; 3 x-y+2 z=1 ; 2 x-2 y+3 z=2 ; x-y+z=-1$.
If consistent solve it completely.
3. (a) Solve the differential equation

$$
\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0
$$

(b) Solve : $x-\tan ^{-1} p=\frac{p}{1+p^{2}}$, where $p=\frac{d y}{d x}$
4. (a) Use method of variation of parameters to solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=2 e^{x}
$$

(b) Apply operator method to solve the simultaneous differential equations:

$$
\begin{equation*}
\frac{d x}{d t}+x-3 y=0 ; \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}-2 y=\sin t \tag{4,4}
\end{equation*}
$$

5. An LCR circuit with battery e.m.f. E sin $p t$ is tuned to resonance so that $p^{2}=\frac{1}{\mathrm{LC}}$. Show that for small values of $\frac{\mathrm{R}}{\mathrm{L}}$, the current in the circuit at any time t is $\frac{\mathrm{E} t}{2 \mathrm{~L}} \sin p t$.

SECTION-C

6. (a) Prove that

$$
\nabla \cdot(\overrightarrow{\mathrm{F}} \times \overrightarrow{\mathrm{G}})=\overrightarrow{\mathrm{G}} \cdot(\nabla \times \overrightarrow{\mathrm{F}})-\overrightarrow{\mathrm{F}} \cdot(\nabla \times \overrightarrow{\mathrm{G}})
$$

(b) Find the work done by the force

$$
\overrightarrow{\mathrm{F}}=(2 y+3) \hat{i}+x z \hat{j}+(y z-x) \hat{k}
$$

When it moves a particle from the point $(0,0,0)$ to the point $(2,1,1)$ along the curve $x=2 t^{2}, y=t$ and $z=t^{3}$.
7. (a) State Green's theorem in plane and use it to evaluate the integral

$$
\oint_{\mathrm{C}} 3 y d x+2 x d y
$$

where C : the boundary of $0 \leq x \leq \pi, 0 \leq y \leq \sin x$
(b) Using Gauss divergence theorem evaluate

$$
\int_{\mathrm{C}} \overrightarrow{\mathrm{~F}} \cdot \hat{n} d s
$$

where $\overrightarrow{\mathrm{F}}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$ over the surface S of the cube bounded by $x=0, x=1, y=0, y=1, z=0$ and $z=1$.
8. (a) An insurance company insures 4000 people against loss of both eyes in a car accident. Based on previous data, the rates were computed on the assumption that on the average 10 persons in $1,00,000$ will have car accident each year that result in this type of injury. What is the probability that more than 3 of the insured will collect on their policy in a given year?
(b) Fit a least square geometric curve $y=a x^{b}$ to the data :

\boldsymbol{x}	1	2	3	4	5
\boldsymbol{y}	0.5	2	4.5	8	12.5

9. (a) The following random samples are measurements of heat producing capacity in thousands of calories per ton of specimens of coal from two mines :

Mine I	8,260	8,130	8,350	8,070	8,340	
Mine II	7,950	7,890	7,900	8,140	7,920	7,840

Test at 5\% level of significance whether the difference between the means of these two samples is significant.

Given $t_{9,0.05}=2.26, t_{10,0.05}=2.23, t_{11,0.05}=2.20$.
(b) There are two different choices to stimulate a certain chemical process. To test whether the variance of the yield is the same no matter which catalyst is used, a sample of 10 batches is produced using the first catalyst and of 12 using the second. If the resulting data is $S_{1}^{2}=0.14, S_{2}^{2}=0.28$, then test the hypothesis of equal variance at 2% level. Given that $F_{11,9,0.02}=5.20, F_{9,11,0.02}=2.95$.

